32 research outputs found

    Extreme loss of immunoreactive p-Akt and p-Erk1/2 during routine fixation of primary breast cancer

    Get PDF
    INTRODUCTION: Very few studies have investigated whether the time elapsed between surgical resection and tissue fixation or the difference between core-cut and excision biopsies impact on immunohistochemically measured biomarkers, including phosphorylated proteins in primary breast cancer. The aim of this study was to characterise the differences in immunoreactivity of common biomarkers that may occur (1) as a result of tissue handling at surgery and (2) between core-cuts and resected tumours. METHODS: Core-cuts taken from surgical breast cancer specimens immediately after resection (sample A) and after routine X-ray of the excised tumour (sample B) were formalin-fixed and paraffin-embedded and compared with the routinely fixed resection specimen (sample C). The variation in immunohistochemical expression of Ki67, oestrogen receptor (ER), progesterone receptor (PgR), human epidermal growth factor 2 (HER2), p-Akt and p-Erk1/2 were investigated. RESULTS: Twenty-one tissue sets with adequate tumour were available. Median time between collection of core-cuts A and B was 30 minutes (range, 20 to 80 minutes). None of the markers showed significant differences between samples A and B. Similarly, Ki67, ER, PgR and HER2 did not differ significantly between core-cuts and main resection specimen, although there was a trend for lower resection values for ER (P = 0.06). However, p-Akt and p-Erk1/2 were markedly lower in resections than core-cuts (median, 27 versus 101 and 69 versus 193, respectively; both P < 0.0001 [two-sided]). This difference was significantly greater in mastectomy than in lumpectomy specimens for p-Erk1/2 (P = 0.01). CONCLUSIONS: The delay in fixation in core-cuts taken after postoperative X-ray of resection specimens has no significant impact on expression of Ki67, ER, PgR, HER2, p-Akt or p-Erk1/2. However, extreme loss of phospho-staining can occur during routine fixation of resection specimens. These differences are likely attributable to suboptimal fixation and may have major repercussions for clinical research involving these markers

    Integrative analyses identify modulators of response to neoadjuvant aromatase inhibitors in patients with early breast cancer

    Get PDF
    Introduction Aromatase inhibitors (AIs) are a vital component of estrogen receptor positive (ER+) breast cancer treatment. De novo and acquired resistance, however, is common. The aims of this study were to relate patterns of copy number aberrations to molecular and proliferative response to AIs, to study differences in the patterns of copy number aberrations between breast cancer samples pre- and post-AI neoadjuvant therapy, and to identify putative biomarkers for resistance to neoadjuvant AI therapy using an integrative analysis approach. Methods Samples from 84 patients derived from two neoadjuvant AI therapy trials were subjected to copy number profiling by microarray-based comparative genomic hybridisation (aCGH, n = 84), gene expression profiling (n = 47), matched pre- and post-AI aCGH (n = 19 pairs) and Ki67-based AI-response analysis (n = 39). Results Integrative analysis of these datasets identified a set of nine genes that, when amplified, were associated with a poor response to AIs, and were significantly overexpressed when amplified, including CHKA, LRP5 and SAPS3. Functional validation in vitro, using cell lines with and without amplification of these genes (SUM44, MDA-MB134-VI, T47D and MCF7) and a model of acquired AI-resistance (MCF7-LTED) identified CHKA as a gene that when amplified modulates estrogen receptor (ER)-driven proliferation, ER/estrogen response element (ERE) transactivation, expression of ER-regulated genes and phosphorylation of V-AKT murine thymoma viral oncogene homolog 1 (AKT1). Conclusions These data provide a rationale for investigation of the role of CHKA in further models of de novo and acquired resistance to AIs, and provide proof of concept that integrative genomic analyses can identify biologically relevant modulators of AI response

    Gene promoter hypermethylation in ductal lavage fluid from healthy BRCA gene mutation carriers and mutation-negative controls

    Get PDF
    INTRODUCTION: Female germline BRCA gene mutation carriers are at increased risk for developing breast cancer. The purpose of our study was to establish whether healthy BRCA mutation carriers demonstrate an increased frequency of aberrant gene promoter hypermethylation in ductal lavage (DL) fluid, compared with predictive genetic test negative controls, that might serve as a surrogate marker of BRCA1/2 mutation status and/or breast cancer risk. METHODS: The pattern of CpG island hypermethylation within the promoter region of a panel of four genes (RAR-β, HIN-1, Twist and Cyclin D2) was assessed by methylation-specific polymerase chain reaction using free DNA extracted from DL fluid. RESULTS: Fifty-one DL samples from 24 healthy women of known BRCA mutation status (7 BRCA1 mutation carriers, 12 BRCA2 mutation carriers and 5 controls) were available for methylation analysis. Eight of 19 (42.1%) BRCA mutation carriers were found to have at least one hypermethylated gene in the four-gene panel. Two BRCA mutation carriers, in whom aberrant methylation was found, also had duct epithelial cell atypia identified. No hypermethylation was found in DL samples from 5 negative controls(p = 0.13). CONCLUSION: We found substantial levels of aberrant methylation, with the use of a four-gene panel, in the fluid from the breasts of healthy BRCA mutation carriers compared with controls. Methylation analysis of free DNA in DL fluid may offer a useful surrogate marker for BRCA1/2 mutation status and/or breast cancer risk. Further studies are required for the evaluation of the specificity and predictive value of aberrant methylation in DL fluid for future breast cancer development in BRCA1/2 mutation carriers
    corecore